
More May Not Necessarily Be Better: A Comparison of
Vulnerable Dependency Detection Tools

Abstract
Modern software uses many third-party libraries and frame-
works as dependencies. Known vulnerabilities in dependen-
cies is a major security risk. While tools exist to detect vul-
nerable dependencies, a formal study is yet to be performed
to evaluate the existing tools. The goal of this study is to
aid security practitioners and researchers in understanding
the current state of vulnerable dependency detection through
a comparative study of existing tools. We run 10 industry-
leading dependency detection tools on a large web application
composed of Maven (Java) and npm (JavaScript) projects. We
find that the tools’ results vary for both vulnerable dependen-
cies and the unique vulnerabilities. The count of identified
dependencies with known vulnerabilities ranges from 17 to
332 for Maven and from 32 to 239 for npm projects across
different tools. Similarly, the count of unique vulnerabilities
ranges from 36 to 313 for Maven and from 45 to 234 for npm
projects. However, none of the tools include all the findings
from the other tools. We find that inconsistency in vulner-
ability to dependency mapping is a primary reason behind
differences in tools’ results. Further, tools can provide addi-
tional metrics to assess the risk of a vulnerability from the
context of the dependant application. We provide a character-
ization of such metrics as provided by different tools.

1 Introduction

Modern software typically uses third-party libraries, packages,
or frameworks, usually referred to as dependencies. As much
as 80% of code in today’s applications can come from these
dependency packages [52]. A 2017 study found that 96% of
the commercial applications contain open source packages
with an average of 257 packages per application [55]. The
package manager for the JavaScript programming language,
npm, hosts more than 1.3 million open source packages at the
time of this writing [9].

However, known vulnerabilities in dependencies is one of
the top ten security risks [39]. In 2017, attackers exploited a

vulnerability in Apache Struts Framework of Equifax software
leading to a major data breach. While the vulnerability was
published and patched in March of that year, attacks were
successful until July as Equifax kept using the vulnerable
version of the framework [30]. Since this incident, a recent
security report has found a 430% surge in cyber attacks aimed
at upstream open source packages [48].

Several security tools, both open source and commercial,
exist that detect the dependencies of a software with known
vulnerabilities, i.e. vulnerable dependencies (VD). These
tools differ in how they detect the used dependencies and how
rich and accurate is their vulnerability database. Therefore,
the results from different tools can vary from each other. A
formal study is yet to be performed to compare the techniques
and the scan results of the existing tools.

Further, not all alerts generated by security tools are rele-
vant or high-priority to the developers [32,41]. False positives
are a common problem for security tools [33]. The tools can
report vulnerabilities on dependencies that are never actually
used in production or the vulnerability can be in parts of de-
pendency not used by the product. Also, vulnerability data
may spread across different databases, bug repositories and
tools may lack in completeness of their reports.

Assessing the risk of vulnerabilities in dependency is also
necessary from a prioritization point. The fix of the VDs can
have high cost due to many factors, including but not lim-
ited to, regression testing; breaking changes; and application
legacy [22, 46]. Severity rating of the vulnerability may not
be adequate and developers would need to assess risk from
the context of the dependant application. What additional in-
formation is presented by existing tools to aid in such risk
assessment has not been formally characterized yet.

The goal of this study is to aid security practitioners and
researchers in understanding the current state of vulnerable
dependency detection through a comparative study of existing
tools. We answer the following research questions:

RQ1: How do the analysis results of existing
vulnerable dependency detection tools differ in

1

comparison to each other?

RQ2: What additional information is presented
by the existing tools to aid in assessing the risk
of vulnerability in dependencies?

To answer, we evaluate 10 vulnerable dependency detection
tools on a large web application, OpenMRS, composed of
Maven (Java) and npm (JavaScript) projects. The selected
tools vary in their scanning technique and vulnerability data
source and represent the state-of-the-art while the evaluation
subject covers two of the most popular package ecosystems.
The contributions of this paper are:

1. A comparative analysis of ten VD detection tools over
Maven and npm dependencies;

2. A manual analysis of differences in tools’ results;

3. A characterization of additional risk assessment metrics
provided by the tools.

The remainder of the paper is structured as follows: Section
2 introduces the key concepts and terminologies; Section 3
and 4 explains the evaluation subject software and the studied
tools. Section 5 and 6 discusses the findings of this paper
followed by discussion and limitation of the findings. Section
9 discusses related work followed by conclusion.

2 Key Concepts & Terminologies:

Below, we discuss some common terminologies as used in
this paper:

Package Manager: A package manager is a collection of
software tools that hosts open source packages and automates
the process of their configurations. Maven, npm, RubyGems
are the most popular package managers for handling Java,
Node.js (JavaScript), and Ruby packages respectively.

Dependency: When a software uses a third-party package
(usually open source) for some functionality, the package is
referred to as a dependency of the software. Typically, the soft-
ware declares a specific version (or, a range of valid versions)
of the third-party package as its dependency. In the remainder
of this paper, we refer to ‘dependency’ as a specific version
of a package. For e.g. version 1.0.0 and version 2.0.0 of the
same package A will be considered as distinct dependency.
However, they will be considered as the same package.

Dependency File: The list of required dependencies of a
software is usually declared in a manifest file along with other
project metadata. A package manager reads these files to
resolve the required dependencies. pom.xml and package.json
are dependency file for Maven and npm respectively.

Dependency Tree: The dependencies that a software ac-
cesses directly from its own code are called direct depen-
dencies. However, the direct dependencies may depend on
other open source packages which is required by the host

machine to run the software successfully. Such packages are
called transitive dependencies. Therefore, for most package
managers, including Maven and npm, the whole dependency
structure is hierarchical and forms a tree format. Depth of a
dependency refers to their level in the dependency tree with
direct dependencies having depth of one.

Vulnerability: NIST [38] defines vulnerability as a "weak-
ness in an information system, system security procedures,
internal controls, or implementation that could be exploited or
triggered by a threat source." Security practitioners constantly
discover new vulnerabilities in already released versions of
software packages. If reported, respective project maintainers
can fix the vulnerability in a new version.

Vulnerable dependency (VD): When a dependency of a
software is subject to publicly known vulnerabilities, it is
referred to as a VD. To mitigate the threat, the maintainers of
the software can either remove the dependency or change the
dependency to a safer version.

Common Vulnerabilities and Exposures (CVE): The
primary reference-tracking system for known vulnerabili-
ties is Common Vulnerabilities and Exposure (CVE) system
where each vulnerability is referenced by a unique CVE identi-
fier. There are publicly accessible databases for CVEs such as
NVD [10], Mitre [8]. However, there are databases that track
known vulnerabilities not necessarily having a CVE identi-
fier, such as npm Security Advisories [11], Sonatype OSS
Index [17], GitHub security advisories [6]. Similarly, security
tools can also maintain their own vulnerability databases. In
this paper, the vulnerability that does not have an associated
CVE identifier is referred to as Non-CVE.

2.1 Maven:
Maven is a package manager for Java projects.

Dependency Scopes: Maven dependencies can have six
different scopes [45]: compile, provided, runtime, test, system,
and import. The scopes determine which classpaths a depen-
dency will be available in (compile, test, and/or runtime) and
if the dependencies can propagate transitively..

Dependency Mediation: When there are multiple versions
of a package in the dependency tree, Maven picks one with
the nearest definition. Therefore, usually a single project has a
single version of a package as a dependency. Maven stores the
dependencies in a local cache on the host machine from where
they are read. In the dependency file (pom.xml), developers
generally specify a single version for its dependencies.

Version numbering: Version numbers can have up to five
parts indicating major, minor, or incremental changes.

2.2 Node Package Manager (npm):
npm is a package manager for JavaScript projects.

Dependency Scopes: npm has two primary dependency
scopes: Prod (production) and dev (development) to indi-

2

cate the phase where a dependency is required. Two other
dependency scopes, peer and optional, are not automatically
resolved by npm and therefore, are ignored in this study.

Dependency Mediation: npm copies all the dependencies
in a project sub-directory called ‘node_modules’, with the
similar structure of the dependency tree. If two dependencies
A and B both depends on the same package C, two different
copies of package C will be copied inside package A and B.
Therefore, the same dependency can have multiple paths to
be introduced to the root application. Also, the same package
can have multiple versions as dependencies. Therefore, npm
has a concept called dependency path which is not present in
Maven. Each unique path a dependency is introduced to the
root application is referred to as dependency path.

In npm, developers can list a range of versions for a package
that is valid as a dependency. npm also has the concept of
lock files – a snapshot of the entire dependency tree and their
resolved version at a given time; and can be used to instruct
npm to install the specified versions in the lock file.

Version numbering: npm packages follow the SemVer
format [1] for version numbering which has three parts indi-
cating a) major release (may break backward compatibility),
b) minor release (backward compatible new features), c) patch
release (backward compatible bug fixes).

3 Evaluation subject software: OpenMRS

OpenMRS is a web application for electronic medical record
platform [12]. The application is structured as a modular,
multi-layered system. A particular configuration of OpenMRS
that can be installed and upgraded as a unit is referred to as a
distribution. The general purpose distribution of OpenMRS
is the “Reference Application Distribution” [13]. We choose
Version 2.10.0 of this distribution released on April 6, 2020
(latest release at the time of this study) as our evaluation
subject. In the remainder of the paper, we refer to the whole
distribution simply as “OpenMRS”.

OpenMRS consists of 44 projects that are hosted in their
own separate repositories on GitHub. While these projects
are called modules that make up the whole distribution, these
modules themselves can have further modular design (sub-
projects). We consider each project hosted on its own reposi-
tory as an individual entity regardless of their structure.

Out of the 44 projects, 39 are Maven projects and 1 is an
npm project. The other 4 projects are composed of a Maven
and an npm project each. We identify Maven and npm project
based on the presence of pom.xml and package.json file spec-
ifying metadata for corresponding projects. Therefore, we
scope our study to Maven and npm dependencies..

OpenMRS provides a development toolkit, OpenMRS
SDK [14], to automate the build, test, and run of the indi-
vidual projects and assemble the full application. We use this
SDK in this study to perform the required security testing.

3.1 Why OpenMRS?

Choosing test cases to evaluate software security tools can
be a complex task. The challenges of test case selection dis-
cussed in [29] include three characteristics for an ideal test
case candidate: 1) representative of real, existing software;
2) sufficient and diverse number of security weaknesses; and
3) availability of ground truth. Since, ours is the first for-
mal study evaluating VD detection tools, we have no existing
benchmark to follow. There is one evaluation framework avail-
able prepared by a VD detection tool [5]. However, this non
peer-reviewed framework consists of artificially-synthesized
projects and might be biased to the representative tool.

Delaitre et al. [29] recognizes that no candidate test case
exhibits all three characteristics of an ideal; and opines that
any software system meeting two of the three characteris-
tics can be a valid candidate. OpenMRS, being actively used
and maintained, is a real, existing software. Moreover, the
software contains Maven and npm projects – two of the most
popular and large package ecosystems. Consequently, the soft-
ware depends on a large number of third-party dependencies
as seen in Section 3.2; and being a web application, is com-
posed of several heterogeneous components which increases
the probability of having a sufficient, diverse number of VDs.

Regarding the third characteristic, we have no ground truth
available for OpenMRS. Determining true positives for VDs
has no established guidelines and can be subjective. However,
we will not be comparing the VD detection tools in terms of
precision or recall metrics; our goal is to only measure the
differences in the tools’ results. Therefore, having met the
two of the three characteristics mentioned in [29], OpenMRS
is a suitable candidate for this study.

Another approach of evaluation instead of a single case
study can be running the tools on a group of diverse projects.
However, some of the selected tools in this study are resource
and time-consuming to run while some tools involve sophis-
ticated analysis with certain requirements (e.g. acceptance
tests for interactive binary instrumentation, unit tests for ex-
ecutablity tracing) and set-up that creates a barrier to scale
our study to projects of diverse structures and configurations.
Moreover, focusing on a single case study enables us to man-
ually investigate the differences in the tools’ results.

OpenMRS has also been used in security and privacy re-
search in the past [23, 25, 26, 36, 47, 51]. Lamp et al. [36]
evaluated OpenMRS for several medical system security re-
quirements; Rizvi et al. [47] evaluated OpenMRS for access
control checking; while Amir-Mohammadian et al. [23] stud-
ied OpenMRS for correct audit logging.

3.2 OpenMRS: Dependency Overview

In this section, we provide an overview of Maven and
npm dependencies of OpenMRS. We parse the dependency
tree of each project through native mvn dependency:tree and

3

Table 1: OpenMRS dependency overview

Maven npm
No. of projects 43 5
Total unique dependencies
(package and version) 547 2,213

Total unique packages 311 1,498
Median dependency per project 127.0 840.5
Median dependency path per project NA 1,675.0
Median depth of dependencies 2 4
Max. depth of dependencies 7 12
Median Provided dependencies 99.0 NA
Median Compile dependencies 3.0 NA
Median Runtime dependencies 5.0 NA
Median Test dependencies 24.5 NA
Median Production dependencies NA 202.5
Median Production dependency path NA 366.0
Median Developer dependencies NA 807.5
Median Developer dependency path NA 1,613.5

npm list command. We also parse each dependency’s scope
and depth in the dependency tree.

Table 1 provides a dependency overview of OpenMRS.
Note that, for Maven projects, there can be first-party de-
pendencies – that is – a project within the OpenMRS distri-
bution can listed as a dependency for another project. We
do not count the first-party dependencies in Table 1. Also,
npm projects can contain lock files such as shrinkwrap.json,
package-lock.json which are not considered in Table 1.

4 Vulnerable Dependency Detection Tools

4.1 Tool Selection
To identify the existing VD detection tools from both indus-
trial offerings and the latest research, we performed an aca-
demic literature search and a web search through following
keywords: (vulnerable OR open source OR software) AND
(dependency OR package OR library OR component OR com-
position) AND (detection OR scan OR tool OR analysis).

From the relevant search results, we filtered the tools with
following inclusion criteria: a) scans either Maven or npm
projects; b) we have an access to an executable tool; c) offers
unique features to already selected tools. From our selection
process, we selected ten tools. Three of the tools are not freely
available and license agreement prevents us from providing
the names. We refer to them as Commercial A, B, and C.

We observed that tools primarily differ in three dimensions:

1. Vulnerability data source: To provide the list of known
vulnerabilities, the tools need a data source. Tools can
pull vulnerability data from third-party source(s) that
includes public databases like NVD CVEs. Also, tools
may have a self-curated database where they actively

monitor and curate up-to-date vulnerability data. While
the self-curated databases usually accommodate data
from other public databases, tools may also have propri-
etary techniques to enrich and revise the vulnerability
data with their own findings [24, 35, 54]

2. Dependency scanning source: The dependency files
are the primary source to resolve dependencies of a
project as is done by the package managers. However,
tools can deduce dependencies from the source code and
application binaries as well.

3. Additional analysis to infer dependency use: Tools
can offer additional static and/or dynamic analysis to
infer how the dependencies are being used.

Table 2 presents an overview of the ten selected tools based
on the their documentation and our experience of using them.
“No Information” is listed in the absence of accurate infor-
mation. Tools can also suggest fix actions for the detected
VDs. While we do not consider fix suggestions during tool
selection, we discuss this feature in the findings.

4.2 Running the Tools
Below we describe how we performed the scans:

OWASP Dependency-Check (DC): This tool works by scan-
ning the dependency files, JARs, and JavaScript files [7] and
pulls vulnerability data from multiple third-party sources. We
used the Maven plugin to scan Maven projects and the com-
mand line tool (Version 5.3.2) to scan npm projects. We had
the experimental analyzer option enabled while running the
tool as JavaScript is only available through this option.

Snyk: We ran the command line tool (Version 1.382.0)
that is freely available. [15] through the command
snyk test -all-projects -dev -json . The -dev flag ensures
that dev dependencies will also get scanned in case of npm
projects which is disabled by default.

GitHub Dependabot: We hosted the 44 studied projects on
the first author’s GitHub account and retrieved the Depend-
abot alerts through GitHub API. The projects were hosted at
the release branch specified in the 2.10.0 version of OpenMRS
distribution which we evaluate in this study.

Maven Security Versions (MSV): This tool is part of the
Victims project [19] and is available for Java projects. We ran
this tool through its Maven plugin.

npm audit: This is a native tool of npm pack-
age manager. We used the npm audit -json and the
npm audit -fix -dry-run -json commands.

Eclipse Steady: This tool performs additional analysis to
assess the execution of vulnerable code in the dependencies
in a given application context [4]. The approach implemented
is described in [43] and [42]. The tool requires a manual set

4

Table 2: Studied vulnerable dependency (VD) detection tools

Tool Java JavaScript Vulnerability
Data Source

Dependency
Scan Source

Additional
Analysis

OWASP
Dependency-Check (DC)

Third-party: NVD,
OSS Index, npm

Dependency file,
source code, binary

Snyk Self-curated Dependency file
GitHub Dependabot Self-curated No Information
Maven Security
Versions (MSV) Self-curated Dependency file

npm audit Self-curated Dependency file

Eclipse Steady Self-curated
Dependency file,
source code, binary

Static and dynamic analysis
to determine reachability
of vulnerable code

WhiteSource Self-curated No Information

Commercial A Self-curated No Information
Static and dynamic analysis
to identify vulnerable call chains

Commercial B No Information Binary
Interaction testing to identify
dependency under use

Commercial C No Information Binary

up along with the vulnerability database. We used Version
3.1.10 of this tool. We set up Steady in a virtual machine
allocating 16GB RAM and 4 processor cores. Steady hosts
their vulnerability data set on GitHub [18]. The manually
curated data set contains patch commit information for each
vulnerability. We imported the data source updated on Jan
24,2020 in Steady. We then performed the patch analysis
feature provided by the tool to identify the involved code
constructs for each vulnerability.

For risk assessments of the identified VDs, Steady can
perform three additional analysis: 1) static call graph con-
struction; 2) executing JUnit tests for analyzing executability
traces; and 3) JVM instrumentation through integration test-
ing. We were unable to complete the third analysis as the tool
presumably ran out of memory after running for ten days.

WhiteSource: WhiteSource has a GitHub app named “White-
Source Bolt” [20]. We connected this app with our hosted
repositories on GitHub and retrieved the issues created by
WhiteSource through GitHub API.

Commercial A: This tool has scientific papers discussing
their approach (not citing to maintain blindness). We con-
tacted their research team and provided them with the repos-
itory links for the studied projects. They returned us with
scan reports only for Maven dependencies for 37 projects and
reported that they failed to complete the automated scans for
the rest of the projects which may have required a manual
intervention. This tool offers static analysis by default, and dy-
namic analysis as an option to identify vulnerable call chains.
We received scan report only with static analysis performed
on the code.

Commercial B: We used the free cloud edition of the tool.

The tool scans dependency through interactive application
security testing – that is – monitoring dependencies in use
when an application is run and interacted with either through
automated testing or human tester. OpenMRS provides 123
test cases for integration testing that interact with the applica-
tion through a Selenium web-driver. We connected OpenMRS
to this tool and used the integration test suite to interact with
the application.

Commercial C: This tool connects with an application during
runtime and scans the dependencies through the associated
binaries. We set up a local server for this tool and connected
to OpenMRS.

For eight of the ten tools, we collected the analysis report
separately for 44 projects. For Commercial B and C, we get a
single report for the whole OpenMRS distribution. As vulner-
ability data gets updated over time, we ran all the tools during
the month of September 2020 to ensure a fair comparison
with the exception of Steady which requires a manual setup.
The vulnerability data in Steady is from January 2020.

4.3 Analyzing Tool Results

Below we discuss metrics and information that we processed
from the tool reports to answer our research questions.

Quantity of Alerts: When a project is scanned by a tool,
the tool reports a raw count of alerts identified on the project.
However, the alerts do not represent either unique dependen-
cies or unique vulnerabilities. The same alerts can be repeated
due to OpenMRS’s multi-module project structure. The alert
count, however, may indicate the amount of effort required
from the developers to audit the scan reports.

5

Table 3: Vulnerable Dependencies for Maven (Java) projects

Tool Alert Unique
Dependency

Unique
Package

Unique
Vulnerability CVE Non-CVE Scan Time

(Minutes)
Total (Median per project)

OWASP DC 12,466 (254.0) 332 (38.0) 149 (36.0) 313 (117.0) 289 24 14.4
Snyk 4,902 (66.0) 96 (6.0) 46 (6.0) 189 (23.0) 178 11 15.1
Dependabot 136 (0.0) 20 (0.0) 11 (0.0) 61 (0.0) 61 0 NA
MSV 3,197 (58.0) 36 (12.0) 14 (12.0) 36 (22.0) 36 0 3.4
Steady 2,489 (51.0) 91 (20.0) 39 (19.0) 97 (41.0) 89 8 385.0
WhiteSource 434 (0.0) 76 (0.0) 44 (0.0) 146 (0.0) 127 19 NA
Commercial A 2,998 (70.0) 107 (24.0) 53 (24.0) 208 (70.0) 187 21 NA
Commercial B 205 35 35 127 127 0 NA
Commercial C 57 17 17 57 57 0 NA

Table 4: Vulnerable Dependencies for npm (JavaScript) projects

Tool Alert
Unique

Dependency
Path

Unique
Dependency

Unique
Package

Unique
Vulnerability

CVE,
Non-CVE

Scan Time
(Minutes)

Total (Median per project)

OWASP DC 1,379 (208.0) 498 (72.0) 239 (71.0) 160 (57.0) 234 (71.0) 78, 156 4.4
Snyk 2,210 (135.0) 1,004 (44.0) 90 (20.0) 54 (17.0) 121 (26.0) 79, 42 1.0
Dependabot 97 (8.0) NA 32 (1.0) 30 (1.0) 45 (4.0) 29, 16 NA
npm audit 1,266 (37.0) 852 (28.0) 58 (12.0) 45 (12.0) 62 (16.0) 31, 31 0.1
WhiteSource 205 (32.0) 205 (32.0) 89 (14.0) 55 (9.0) 96 (18.0) 58, 38 NA

Tracking unique dependency, dependency path, pack-
age, and vulnerability: The definitions of these four metrics,
as used in this study, are provided in Section 2. When process-
ing the analysis reports from all the tools, we store the data in
a relational database schema. In the schema, we keep an iden-
tifier for each unique package, dependency (package:version),
dependency path, and CVE identifier. For the non-CVEs, all
tools except OWASP DC and Commercial A provide a tool-
specific identifier. While OWASP DC and Commercial A
provide no reliable identifier to track unique non-CVEs, upon
manual inspection, we noticed that vulnerability description
along with the affected package(s) is a reliable way to track
non-CVEs. However, we have no reliable way to map non-
CVEs across different tool reports.

Scan time indicates the total number in minutes a tool took
to scan all the projects. We have no scan time for GitHub and
WhiteSource as they are GitHub cloud services. We collected
the issues and alerts from GitHub at the end of September,
at least two weeks after hosting the repositories. Both Com-
mercial B and C detect dependencies during runtime, and
therefore, have no definite scan time.

Other information: Tools had additional information in
their report generally to aid developers in assessing the risk of
the alerts and to help in fixing them. We also collected these
additional data which will be explained in Section 5.3 and 6

when discussing the findings.

5 RQ1: How do the analysis results of exist-
ing vulnerable dependency detection tools
differ in comparison to each other?

Table 3 and 4 shows the tools’ result summary for Maven
and npm dependencies, respectively. Note that, we only have
partial scan reports (37 projects) for Commercial A. For eight
tools that scanned projects individually, the tables show the
median count per project for alerts and unique dependency,
dependency path, package, and vulnerability besides the total
count for the full application. The tables also report the total
count of CVEs, non-CVEs, and scan time for each tool.

The alert counts are typically higher than the count of
unique vulnerabilities or the count of vulnerable dependency
paths. While the total alert count repeats the same vulnera-
bilities found across projects, many tools repeated the same
alert for each sub-modules within a project as well. We also
see the unique dependency count is higher than the unique
package count. Different versions of the same package may
be declared as a dependency in different projects for Maven
while npm can have multiple versions of the same package
even within a single project. Below we discuss our findings:

The tools vary in their results: We find a wide range

6

Table 5: Scope breakdown and Max. depth of detected vulnerable dependencies (VDs)

Tool Scope breakdown for
Maven VDs

Scope breakdown for
npm VDs

Max. Depth of
VDs

Compile Provided Runtime Test Prod Dev Maven npm
OWASP DC 58 66 4 54 65 207 6 10
Snyk 56 62 2 25 13 83 7 10
Dependabot 15 5 1 2 6 8 2 6
MSV 19 30 1 3 NA NA 5 NA
npm audit NA NA NA NA 15 51 NA 10
Steady 60 60 4 11 NA NA 5 NA
WhiteSource 54 0 2 0 12 76 5 10
Commercial A 72 79 1 0 NA NA 5 NA

across tools for both unique dependency and the unique vul-
nerabilities they found. OWASP DC detects the highest num-
ber of unique dependency and vulnerabilities. Conversely,
Commercial B and C, both tools that scan dependencies from
application binaries, detect the lowest amount of vulnerable
dependencies and only reported the known CVEs in them. We
manually inspected the tools’ result and discuss our observa-
tions on their difference in Section 5.1 and 5.2.

Developers may need to know all dependency paths for
npm VDs in order to approach fixes: In npm, the same
package A can be introduced transitively through multiple
direct dependencies and therefore, can lie in multiple depen-
dency paths. The developers may need to fix each path sep-
arately if there is a vulnerability in package A. We find that,
npm audit and Snyk reports each dependency path to a VD
and considers them as distinct vulnerabilities. For each VD
in npm projects, npm audit finds a median of 2 dependency
path (max = 309 for lodash:4.6.1 in one project) However,
WhiteSource’s issues on GitHub only reports one out of many
possible dependency paths while OWASP DC also does not
report all the possible paths. Dependabot does not report de-
pendency path in its alerts.

Known vulnerabilities without a CVE identifier are
also reported: We find that all tools, except MSV, Commer-
cial B, and C, report non-CVEs as known vulnerabilities. The
number of Maven non-CVE vulnerabilities is an average of
6% of the number of CVE vulnerabilities. Overall, the number
of npm non-CVE vulnerabilities is an average of the same as
of the number of CVE vulnerabilities, though these results are
driven by the high number of non-CVE vulnerabilities found
by OWASP DC. To understand why the non-CVEs might not
have incorporated into the CVE database, we look at their
publish date. For the 53 non-CVEs reported by Snyk, 41 were
published before 2020; while for 54 non-CVEs reported by
WhiteSource, 50 were published before 2020. Therefore, de-
velopers may question why a reported vulnerability does not
have a CVE identifier as CVE validation usually takes around
three months and the scan results are from September 2020.
For npm audit, the publish date was usually not present in the

results. However, if valid, presence of non-CVEs can be an
indicator of the richness of a tool’s vulnerability database.

Projects are often scanned in less than a minute: We
find tools provide VD reports usually under less than a minute
per project. The short scan time can make it possible to inte-
grate VD analysis in continuous integration (CI) tools. GitHub
can present its alerts at each code push. Early notifications as
such can aid developers from introducing a dependency with
already known vulnerabilities. However, additional static and
dynamic analysis to assess the risk of the involved vulnerabil-
ity can take longer time as observed in the case of Steady. A
single project, OpenMRS-Core, took 3 hours and 9 minutes
to complete the two additional analysis for Steady.

Tools find VDs across all scopes and depths: Table 5
shows a scope breakdown and maximum depth of identified
VDs for each tool except Commercial B and C. Commercial
B and C scans dependencies during runtime from application
binaries consisting of 44 projects, and therefore, we are un-
able to determine the scope and depth for them. In the table,
the same dependency can be listed under different scope for
different projects and will be counted twice.

We find that tools detect VDs under all scopes. Also, all
tools except Dependabot, scan both direct and transitive de-
pendencies. While maximum depth of identified VD for De-
pendabot is 2 and 6 for Maven and npm which indicates
transitive dependency, we find that these transitive dependen-
cies were identified by Dependabot only due to: a) the Maven
dependency file explicitly declared the required version for
the transitive dependency; and b) the lock file was present in
the repository that declared the resolved versions of the full
dependency tree. In other cases, Dependabot did not detect
transitive VDs.

In subsequent subsections, we discuss how and why the
tools’ output differed for dependency and vulnerability count.
We also discuss the fix actions suggested by the tools.

7

(a) Overlap ratios for Maven VDs across tools (b) Overlap ratios for npm VDs across tools

Figure 1: Overlap analysis of unique vulnerable dependencies (VDs) for each tool pair: Cell(i,j) indicates the percentage of i’th
tool’s VD that are also detected by the j’th tool. For e.g. for maven VDs, 54% of Snyk’s detected VDs were also detected by
WhiteSource. Conversely, 68% of WhiteSource’s detected maven VDs were also detected by Snyk.

5.1 What is the difference among tools’ re-
sults regarding unique vulnerable depen-
dencies (VDs)?

The heat maps in Figure 1 show overlap ratio across tool pairs
for both Maven and npm VDs. For a tool pair (A,B), the heat
map shows how many VDs detected by A were also detected
by B and vice versa. Note that, Commercial C is not present
in the heat map as it was unable to provide a specific version
for the identified dependency packages in many cases.

While the count of detected VDs ranges from 17 to 332 for
Maven and from 32 to 239 for npm across tools, we find that
none of the tools include all the findings from the other tools.
Figure 2a, 2b demonstrates the (non-) overlap of detected
VDs for three representative tools for both Maven and npm
where we see each tool detected some VDs not detected by
other tools. In general, Figure 1 shows large overlap between
Snyk and Commercial A for maven VDs and between Snyk
and WhiteSource for npm VDs.

To understand why the tools’ results differ, we manually
inspected the results. We specifically focused on the project
coreapps as this is the project with the largest dependency
count and includes both Maven and npm project. While we do
not claim to categorize all possible differences, we list below
our observations:

OWASP DC and WhiteSource detected JavaScript de-
pendencies in Maven projects: The Maven projects in Open-
MRS can also contain front-end JavaScript files. OWASP DC
is able to scan and identify dependencies from JavaScript files
such as jquery, handlebars. These JavaScript dependencies
are not resolved by Maven package manager itself. Beside
OWASP DC, only WhiteSource detected JavaScript dependen-
cies in Maven projects. In total, 42 JavaScript dependencies
were found by OWASP DC while WhiteSource found 20.

Only OWASP DC detected first-party VDs: As men-
tioned in Section 3.2, OpenMRS can have first-party depen-
dencies – one project listed as a dependency to another project
– which were identified only by OWASP DC. Commercial A
listed the first-party dependencies as unmatched libraries.
We also searched through Snyk [16] and WhiteSource’s [21]
vulnerability database online and found no presence of Open-
MRS projects. OWASP DC detected 200 unique VDs that
comes from the openmrs organization as per package meta-
data. However, these 200 VDs contain only 14 unique CVEs
and 6 non-CVEs with unique description. OpenMRS projects
are divided in many sub-modules and OWASP DC reports the
same vulnerability separately for each sub-module which re-
sults in an inflation of alerts and reported VDs. While OWASP
DC is guilty of inflation, the failure of other tools in recogniz-
ing vulnerabilities in openmrs projects indicates that incom-
pleteness in a tool’s vulnerability database can result in false
negatives while reporting VDs.

Tools may inflate alerts by repeating the same vulner-
ability over many related packages: Similar to first-party
VDs, we observed tools may report the same vulnerability
across many related packages (usually sub-components of
a larger package). For example, CVE-2014-3625 was only
reported for spring-webmvc by MSV, Snyk, Steady, and Com-
mercial A. However, OWASP DC reported this CVE for five
separate spring packages. The Common Platform Enumera-
tion (CPE) identifier in CVE data maps to spring_framework
in general and using CPE identifier can result in such in-
flated results [35]. Similarly, we find that CVE-2014-0114
in commons-beanutils is also listed under 3 struts packages
by OWASP DC and under struts-core by Commercial A.
commons-beanutils is a dependency of struts package, and
therefore, CVE data reports both the products as affected by
the CVE which may be the reason behind such inflated report-

8

(a) (b) (c) (d)

Figure 2: Venn Diagram for overlap of VDs and CVEs among three representative tools: OWASP DC, Snyk, and WhiteSource.
The sub-figures represent overlap of (a) Maven VDs, (b) npm VDs, (c) CVEs in maven VDs, (d) CVEs in npm VDs.

ing. Similarly, OWASP DC reported the same 17 CVEs for
activeio-core, activemq-core, and kahadb as they all map to
same CPE while other tools only reported activemq-core.

Conversely, OWASP DC detected functions of npm pack-
ages as individual dependencies. In lodash package, OWASP
DC detected 31 functions such as lodash._baseassign, lo-
dash._reevaluate separately besides the package itself, and
repeated the same 7 vulnerabilities for each of them.

Tools may have different mapping of vulnerability to
dependency: The product identifiers in CVE data can be in-
accurate [35] and tools that have self-maintained vulnerability
databases can curate vulnerability to dependency mapping
for better accuracy. For example, CVE-2014-0114 and CVE-
2019-10086 were reported by OWASP DC, WhiteSource,
and Commercial A in commons-beanutils:1.7.0 while MSV
reported only CVE-2014-0114 and Dependabot reported
only CVE-2019-10086. We looked into Snyk’s vulnerabil-
ity database as to why the CVEs were not reported and found
that Snyk lists the affected version range as [1.8.0,1.9.2) and
[1.9.2,1.9.4) respectively for the two CVEs. Similarly, De-
pendabot also lists [1.8.0,1.9.2) version range as affected for
CVE-2014-0114 but all versions below 1.9.4 as affected for
CVE-2019-10086. In NVD, the affected versions for the two
CVEs are listed simply as up to 1.9.1 and up to 1.9.3. Again,
CVE-2014-3576 is reported by Snyk in activemq-core:5.4.3
but not by WhiteSource and Commercial A. We see that
Snyk database lists [0,] version range as affected by the CVE
while Commercial A lists 5.8.0− 5.10.1. We did not find
the CVE in WhiteSource vulnerability database. Similarly
in npm ecosystem, CVE-2018-1000620 was detected by all
tools except Snyk for cryptiles:0.2.2. We found that in Snyk’s
database, the tool lists only [3.1.0,3.1.3)||[4.0.0,4.1.2) range
as affected by this CVE. The NVD CVE data simply lists
version up to 4.1.1 as affected by the CVE.

The presence of lock files in npm projects may account
for differences in tools’ results: As explained in Section 2,
npm projects can have lock files. Among OpenMRS projects,
the coreapps project has a shrinkwrap.json file, And idgen
has a package-lock.json file. Tools may differ in how they
incorporate information from multiple types of dependency
files. For example, Dependabot detected 15 VDs from lock
files not detected by other tools.

Binary analysis and runtime detection detected low
number of VDs, but may be of high priority: We find that
Commercial C that analyzed the application binary did not de-
tect any JavaScript dependencies. However, it detected server
components such as jetty, tomcat which are not resolved by
Maven package manager. Similarly, Commercial B did not de-
tect any JavaScript libraries. We contacted the tool’s customer
support, and they informed us that the tool does not cover
front-end dependencies (JavaScript). Further, the integration
test suite of OpenMRS has only 123 test cases which may
not cover the full application and can be a possible reason
behind low VDs detected by Commercial B. However, the
dependencies found during user interaction may get perceived
as high priority by the developers.

Inaccurate mapping of vulnerability to affected ver-
sions of packages is a major reason behind alert in-
flation and difference in tools’ results.

5.2 What is the difference among tools’ result
regarding unique vulnerabilities?

In this section, we discuss the difference among tools’ results
for both CVEs and non-CVEs.

Apart from inconsistent vulnerability mapping, state
of CVEs may also result in differences in tools’ results:
Figure 2c, 2d demonstrates the (non-) overlap of reported
CVEs by different tools. Besides inconsistent vulnerability
mapping explained in Section 5.1, there can be other reasons
behind CVE differences. CVE-2019-10768 and CVE-2020-
7676 were detected by Snyk, Dependabot, and WhiteSource
but not by OWASP DC and npm audit. However, the latter
two tools reported one of them as non-CVEs with a more
elaborate explanation. We observed similar other cases where
a CVE was reported without the CVE identifier in npm audit,
which therefore, we counted as non-CVE. The other CVE is
awaiting reanalysis which may be a possible reason they are
not incorporated by the latter tools. Further, we found rejected
CVEs to be reported by tools like WhiteSource, Snyk which
were not reported by other tools.

9

Tools report unique non-CVEs not reported by other
tools: A comparison between non-CVEs across different tools
requires manual analysis as there is no common identifiers.
We manually looked at a random sample of VDs that were
detected by multiple tools and had unique non-CVEs. For
example, for angular:1.6.1 we observe the following cases:
OWASP DC reports two improper input validation vulnerabil-
ity not reported by any other tool. While Snyk, WhiteSource,
and Dependabot reported a similar XSS vulnerability, Snyk
and WhiteSource also reported unique XSS not reported by
others. Snyk also reported a unique denial of service not re-
ported by any other tools. npm audit did not report any of
these non-CVEs. We noticed similar differences in non-CVEs
for other popular packages, such as lodash and ws.

5.3 What fix actions are suggested by the tools
for generated alerts?

As explained in Section 2, Maven and npm dependencies are
resolved and read differently which results in differences in
fix approaches for VD. While Maven dependencies are read
from the same local cache, npm dependencies create separate
copies for a dependency for each possible dependency path.

For Maven projects, tools generally report the versions of
the dependency where the corresponding vulnerability has
been fixed, if it is fixed. However, mitigating direct and transi-
tive dependencies may require different approaches. Develop-
ers can fix the direct dependencies by either removing them or
upgrading them to a safer version. For its 4,902 unique alerts
on Maven projects, Snyk finds 765 (15.6%) alerts can be fixed
through upgrades of direct dependencies. For transitive depen-
dencies, developers either need to upgrade the corresponding
direct dependency that pulls a safer version or explicitly de-
clare the version of the transitive dependency. However, both
options may introduce a breaking change among the appli-
cation or its dependencies, especially when a package gets a
major version change. Snyk identified 189 unique vulnerabili-
ties that involves 195 dependencies. Out of 195, 40 required
a major version change, 37 a minor version change, and the
rest required incremental changes.

For npm, the tool can suggest fix options for both direct and
transitive dependencies. npm audit treats each dependency
path to a VD as a separate vulnerability. For each vulnera-
bility, npm package suggest one out of three resolution op-
tions [2]: a) automatic fix: npm audit can perform automatic
fixes by adding, removing, upgrading, or moving packages
within node_modules directory; b) fix involves upgrade to a
major release that may break backward compatibility; c) no
fix is available, therefore, requires manual review. For core-
apps project, out of 1,116 alerts, npm audit suggest automatic
fix for 84.3% of the alerts; 10.2% required fix involving major,
while the rest have no fix available.

Dependabot and WhiteSource can make automatic pull
requests on GitHub making updates of a VD to a safer version.

WhiteSource (the GitHub pull request bot for WhiteSource
is named Renovate) made 94 pull requests and Dependabot
made 17 pull requests. Among the pull requests made by the
tools, respectively 1 and 5 contained a major version change
of a package which may break backward compatibility.

6 RQ2: What additional information is pre-
sented by the existing tools to aid in assess-
ing the risk of vulnerability in dependen-
cies?

When reporting a VD, tools report the known vulnerabilities
in the dependencies. While all CVEs have a CVSS [3] (Com-
mon Vulnerability Scoring System) rating associated with
them, most non-CVEs also have a severity rating provided by
the tool. However, this severity rating is a characteristic of
the vulnerability itself, and the rating is measured from the
context of the package containing the specific vulnerability.
When a vulnerability lies in a dependency, the risk of the vul-
nerability may also be determined by how the application uses
the dependency – that is – from the context of the dependant
application We notice that, no VD detection tool reports any
risk rating of a vulnerability in dependency from the context
of the application itself.

However, the studied VD detection tools reported several
additional metrics in their scan reports. We identified the
metrics that may possibly aid developers in assessing the
risk of the vulnerability in their project’s dependency and
characterized them in five categories, as discussed in the next
five subsections:

6.1 Code analysis based metrics

Tools may analyze source code or binary of an application
to infer which dependencies are in use; and if vulnerable
part of the dependency code is (potentially) executed by the
application. Three of the tools, Steady, Commercial A, and B
make use of below code analysis based metrics:

Reachability Analysis: Tool can curate their vulnerability
database with details on which part of the code (e.g. method,
class) is involved in a specific vulnerability. Tools then can
infer if the vulnerable code is potentially reachable from the
dependant application through static and/or dynamic analysis.

Steady constructs static call graphs of an application, and if
the vulnerable code in the dependency is reached through the
call graph, Steady marks the corresponding alert as potentially
executable. Further, Steady can look at the executability traces
through unit testing to determine if the vulnerable code is ac-
tually executed. Commercial A, similarly, can perform static
analysis to provide developers with vulnerable call chain –
that is – the call chain from the application code that reaches
the vulnerable method of the dependency.

10

Steady: Static Analysis (Vulnerable code potentially executable)
Total Alerts Package not in use Non-vulnerable code of package used Vulnerable code of package used
2,489 2,095 (84.2%) 340 (13.7%) 54 (2.1%)

Steady: Dynamic Analysis (Code actually executed)
Total Alerts Package not in use Non-vulnerable code of package used Vulnerable code of package used
2,489 2,437 (97.9%) 11 (0.4%) 41 (1.6%)

Commercial A: Vulnerable call chains
Total Alerts Vulnerable Method Calls Total Vulnerable Call Chain Median Call Chain per Method
2,998 31 93 2.0

Table 6: Code analysis based prioritization metrics: Vulnerable code reachability analysis

Table 6 shows the reachability analysis from Steady and
Commercial A. We find that for 84.2% of the alerts, Steady
did not find the corresponding dependency to be used at all by
the dependant application. For only 2.1% alerts, Steady found
the vulnerable code of the dependency was potentially exe-
cutable through static analysis. For 1.6% of the alerts, Steady
found the vulnerable code in the dependency was actually
executed by the dependant application through dynamic anal-
ysis. However, we find disconnect between the findings of
static and dynamic analysis. Only for 13 alerts, both static
and dynamic analysis found the vulnerable code to be in use.
Also, for 11 alerts where dynamic analysis have found the
vulnerable code to be actually executed, static analysis did
not find any part of the dependency code to be in use. This
observation may indicate limitations to reachability analysis.
Similar to Steady, Commercial A also found a low number
of cases where the vulnerable code of the dependency can
actually be reached from application source code.

Static analysis, such as call graph construction for Java, is
known to have limitations [49]. The effectiveness of dynamic
analysis such as Steady’s, is also dependant on having a good
test-suite and test coverage. Further, OpenMRS uses mocking
for testing in many cases, which the Steady skips. Addition-
ally, we set Steady to skip whenever faced with a test case
failure. We see that OpenMRS projects reach only around
20% test coverage in Steady. The limited test coverage may
have affected the dynamic analysis findings for Steady. Never-
theless, the additional information on reachability for certain
alerts may aid developers in assessing the risk and how the
corresponding vulnerability can be exploited from the context
of their application.

Dependency Usage: The dependant application may only
use a portion of the functionalities offered by a dependency.
How much functionalities of a dependency is used by an ap-
plication may indicate the probability of the vulnerable code
in the dependency getting used by the dependant application.

Steady, through its static and dynamic analysis, reports how
many classes out of total available is used in a dependency.
Similar metric is reported by Commercial B but through inter-
action with the application. For example, based on integration
testing, Commercial B found 203 out of 414 classes (49%)

for spring-web and 790 out of 4,4414 (17.9%) classes for
groovy-all to have been used by OpenMRS.

6.2 Package Based metric:

The characteristics of the package itself that is being used as
a dependency may indicate the risk associated with it. For
example, a package that is not actively maintained or have
poor code quality, may contain high risk vulnerability.

Package security rating: Commercial B provides a letter
grade on how secure it is to use a package as a dependency.
Out of the 17 packages being identified as VD by Commercial
B, 16 have an F rating while one has a D rating. The tool
calculates the security rating of a package based on its age,
released versions, and number of known vulnerabilities.

6.3 Dependency characteristics based metrics

The scope and depth of the dependency may indicate the risk
of the vulnerability it contains.

Dependency scope: We observed that for npm projects, the
dependency scope is usually mentioned in the tools’ result.
Snyk does not report the dev dependencies by default while
npm audit can also filter results based on scope. However, for
Maven projects, only Steady reported the scope for each VD.
The dependencies that are only used during testing phase may
perceived with lower risk by the developers.

Dependency depth: Risk may be associated with how
deep a dependency lies within the dependency tree. Snyk
and Steady mentions if a dependency is direct or transitive
for Maven projects. For npm, Snyk and npm audit reports all
possible dependency paths for each VD.

6.4 Vulnerability based metric:

The characteristics of the vulnerability itself can be used in
assessing risk. We found below three types of information
provided by tools:

Severity: Tools typically report the CVSS scores for the
CVEs. For the non-CVEs, Snyk and Commercial A also
present a CVSS score. However, GitHub Dependabot and

11

npm audit presents severity rating on a scale of their own
for both CVEs and non-CVEs. For both the tools, the scale
consists of four levels similar to CVSS3 levels: low, moderate,
high, and critical. We compared these two tools’ rating with
CVSS3 scores for the CVEs they reported and found that both
tools generally has a higher rating than CVSS3 for the same
CVEs. Out of 30 CVEs that npm audit detected, it had higher
rating than CVSS3 for 15 (50%). Similarly, out of 86 CVEs
that Dependabot detected, it had higher rating for 54 (67.5%)

Available exploits: The availability of known exploits may
contribute in assessing the risk for a vulnerability in a depen-
dency. For each vulnerability, Snyk provides if an exploit is
publicly available. For 310 Snyk vulnerabilities, Snyk reports
218 do not have a public exploit; 10 have a functional exploit;
37 have a proof of concept exploit; while 45 have unproven
exploits available. Beside Snyk, Commercial A also reports
on available exploits.

Popularity: How popular or well-known is a vulnerability
may indicate the probability it may get exploited in the wild.
Steady integrates Google trend analysis for each vulnerability
in its reports which indicates the search hits within past 30
days for the specific vulnerability.

6.5 Confidence in alert validity:
As security tools may generate false positive alerts, a confi-
dence rating for each alert may aid in developers in prioritiz-
ing auditing.

Evidence count: As OWASP DC detects dependencies
from scanning multiple sources, it can provide the quantity
of data extracted as a proof for each dependency. The tool
provides confidence label, from Low to Highest, based on this
evidence count. For all Maven alerts except 4, OWASP DC
provided with either High or Highest confidence rating. Simi-
larly, all npm alerts were labeled with Highest confidence.

7 Discussion

Tools may need to scan source code and binaries as well
besides dependency file to find all the dependencies and
to infer which of them are in use. Dependency files are the
typical source to resolve dependencies for a project. How-
ever, we find that OWASP DC can find JavaScript front-end
components as well when scanning source code files which
indicates that there can be code components in a project, pos-
sibly in different programming language, not mentioned in
its dependency files. Tools can miss such dependencies when
solely relying on dependency files. Further, static analysis on
source code may help to determine which dependencies are
in use. Similarly, dynamic analysis and runtime detection can
provide more evidence on executable code in dependency and
therefore, assess the risk of specific vulnerabilities.

Accurate vulnerability to dependency mapping should
be ensured by the tools in order to avoid both false posi-

tive and false negatives: We showed examples in Section 5.1
on how inconsistency in vulnerability to dependency mapping
can result in differences between tools’ results. The product
identifier (CPE) provided in CVE data may not be suitable for
vulnerability mapping for VD detection tools as we see evi-
dence of OWASP DC inflating alerts by repeating the same
vulnerability for several related packages having the same
CPE identifier. We also find inconsistency in what version
range is listed as affected for a specific CVE by different tools.
Our findings highlights the importance of a more accurate
mapping in public vulnerability databases for VD detection.

Non-CVEs should get reported to CVE database to
prove their validity and cross-tool vulnerability mapping.
We find VD detection tools report known vulnerabilities in
dependencies that do not have a CVE identifier, even though
many of them were published before 2020 leaving the non-
CVEs with enough time to be incorporated into CVE database.
We also see tools report rejected CVEs and CVEs awaiting
reanalysis which sheds light on the possible lack of validity of
reported vulnerabilities. We find that different tools can report
the same non-CVEs. However, cross-tool referencing cannot
be done automatically without a common identifier like CVE.
We suggest reporting the non-CVEs to CVE database to es-
tablish validity, make cross-tool referencing easy, and make
the vulnerability widely known.

Tools should suggest fix options while explaining the
risk of backward compatibility. We find that npm audit sug-
gests fix option for each vulnerable dependency path. How-
ever, for Maven project, the fix of the transitive dependencies
may require more manual intervention to analyze the poten-
tial risk of a version change. Prior work has found that fear
of breaking change is one of the primary reasons developers
do not want to update VDs [22]. Tools may provide more
in-depth analysis on what code change is there with a certain
version change in a dependency and how it may affect the
dependant application.

Reachability analysis can help developers identify how
the vulnerability in a dependency is relevant to their ap-
plication. We find that two studied tools, Steady and Com-
mercial A, provide static and dynamic analysis in order to
determine if an application can potentially execute the vul-
nerable code part in the dependency. However, such analysis
requires a vulnerability database enriched with details, such as
code constructs, involved in the vulnerability. Beside Steady
and Commercial A, we find that Snyk also provides details
on which code constructs are involved in the vulnerability
and their corresponding fixes. While reachability analysis
can provide developers with evidence on how their applica-
tion reaches a specific vulnerability, the disconnect between
Steady’s static and dynamic analysis findings, as shown in 6.1,
indicates that more research is necessary on such analyses.

Future research is required to evaluate metrics that
can aid in assessing the risk of a VD. We find that no tools
provide any risk rating of a VD from the context of the depen-

12

dant application. Prior work has found that many vulnerabili-
ties in the dependency may not be relevant to the application
itself [53]. We have seen tools provide code analysis based
metrics determining if a dependency is used in the production
environment or not and a reachability analysis for the vulnera-
ble code. However, the effectiveness of such analysis needs to
be evaluated and how they can be improved by incorporating
additional analyses, e.g. how close is a dependency to the
application’s attack surface [50]. Further, we have seen tools
to provide non-code based metrics such as package security
rating, vulnerability exploits and popularity. Multiples VDs
can be under use in runtime and developers may need to prior-
itize their fixes given the fixes are not cheap [46]. Some areas
of future work include how do practitioners prioritize VDs;
what metrics they use in the decision making process; and
how effective are those metrics.

8 Threats to Validity

The threats to internal validity of our study involve the se-
lection of the evaluation subject. We explain our rationale
behind the choice of OpenMRS in Section 3.1. The threats
to external validity of our study involves the selection of the
studied tools. While we are unable to cover all existing VD
detection tools across different programming languages, we
do not claim the observations we have in Section 5.1, 5.2, 5.3
and the characterizations we provide in 6 to be exhaustive.

9 Related Work

Dependency network of package ecosystems and the presence
of known vulnerabilities in dependencies have been studied
in the literature [28, 34]. Decan et al. [27] studied the impact
of security vulnerabilities in npm dependency network. and
found that the number of packages with a known security
vulnerability is growing over time, and half of the dependant
packages do not get fixed even when the fix is available for
the upstream dependency. [31] and [37] also found around
one-third of the packages in npm network to have at least one
vulnerable dependency (VD) while [31] found that context
use of the module and breaking changes are potential reasons
for not resolving the VDs.

The potential impact of the vulnerabilities in dependency
has also been studied. Zapata et al. [53] studied the impact of
a vulnerability in ws package in npm network on applications
that were using the vulnerable version of the package. The
study finds 73.3% of the dependant applications did not use
the vulnerable code. The study also finds that the dependant
applications that do not use the vulnerable code take longer
to migrate to new versions of a dependency. To detect VDs
where the vulnerable code is actually used by the including
application, Ponta et al. [42–44] proposed a code-centric and
usage-based approach based on which the tool Steady was

developed. Paschenko et al. [40] discusses the over-inflation
problem when reporting VDs. with unexploitable vulnera-
bilities. In another work, Paschenko et al. [41] interviewed
developers on dependency detection tools. The study found
that developers think dependency detection tools generate
many irrelevant and low-priority alerts and may even rely
on social channels than dependency detection tools for vul-
nerability reporting. Developers recommended dependency
detection tools to report only relevant alerts, work offline, and
be easily integrated into company workflow. The literature
focuses on the importance of assessing the risk of vulnerabili-
ties in a dependency with respect to the dependant application
so that developers can prioritize accordingly.

To the best of our knowledge, there has been no formal
study yet evaluating and comparing the existing VD detection
tools. The closest to our work is a recent study by Ponta et
al. [44] where the authors compared their research tool Steady
with OWASP Dependency-Check. The study compare the two
tools over a sample of the alerts generated on Java applica-
tions. The comparison was performed from the perspective
of rechability of a vulnerability in the dependency. The study
finds both tools to have their unique findings. The study also
finds Steady has no false positives but a few false negatives
while OWASP DC has a non-negligible false positives. How-
ever, the study focuses on evaluating the detection capabilities
of Steady based on its advanced analysis whereas our study
aims to provide a comprehensive comparison of existing VD
detection tools for both Java and JavaScript dependencies.

10 Conclusion

We evaluate 10 VD detection tools on a large web application
composed of Maven (Java) and npm (JavaScript) projects.
We find disconnect between the tools’ results while no sin-
gle tool covered all the findings from the other tools. We
find results by the tools can both be inflated based on how
the data is presented (e.g. repeating the same vulnerability
across several related packages) and deflated based on the
scanning technique (e.g. interaction testing). Evidences in
our findings suggest that accurate vulnerability to dependency
(package:version) mapping is required to avoid both false
positives and false negatives. Further, we find that tools can
provide additional metrics to assess the risk of a VD from the
context of the dependant application. We characterize the pro-
vided metrics into five high-level categories. Overall, we find
that tools should strive to maintain an accurate vulnerability
database while future research is necessary in evaluating the
metrics for assessing the risk of vulnerabilities in dependency.

11 Acknowledgements

We thank the [blinded] for their valuable feedback. Our re-
search was partially funded by NSA.

13

References

[1] About semantic versioning. https://docs.npmjs.
com/about-semantic-versioning.

[2] Auditing package dependencies for security
vulnerabilities. https://docs.npmjs.com/
auditing-package-dependencies-for-\
security-vulnerabilities.

[3] Common vulnerability scoring system.
https://en.wikipedia.org/wiki/Common_
Vulnerability_Scoring_System.

[4] Eclipse steady 3.1.14 (incubator project). https://
eclipse.github.io/steady/about/.

[5] Evaluation framework for dependency analysis. https:
//github.com/srcclr/efda.

[6] Github advisory database. https://github.com/
advisories.

[7] How does dependency-check work? https:
//jeremylong.github.io/DependencyCheck/
general/internals.html.

[8] Mitre cve datagbase. https://cve.mitre.org/.

[9] Module counts. modulecounts.com.

[10] National vulnerability database. https://nvd.nist.
gov/vuln.

[11] Npm security advisories. https://www.npmjs.com/
advisories.

[12] Openmrs around the world. http://guide.openmrs.
org/en/.

[13] Openmrs reference application distribution.
https://wiki.openmrs.org/display/docs/
OpenMRS+Reference+Application+Distribution.

[14] Openmrs sdk. https://wiki.openmrs.org/
display/docs/OpenMRS+SDK.

[15] Snyk open source security manage-
ment. https://snyk.io/product/
open-source-security-management/.

[16] Snyk vulnerability db. https://snyk.io/vuln.

[17] Sonatype oss index. https://ossindex.sonatype.
org/.

[18] Steady vulnerability dataset. https://github.com/
SAP/project-kb.

[19] Victims software vulnerability scanner. https://blog.
victi.ms/.

[20] Whitesource bolt for github. https://github.com/
apps/whitesource-bolt-for-github.

[21] Whitesource vulnerability database.
https://www.whitesourcesoftware.com/
vulnerability-database/.

[22] 0patch.com. Security patching is hard. https:
//0patch.com/files/SecurityPatchingIsHard_
2017.pdf.

[23] Sepehr Amir-Mohammadian, Stephen Chong, and Chris-
tian Skalka. Correct audit logging: Theory and practice.
In International Conference on Principles of Security
and Trust, pages 139–162. Springer, 2016.

[24] Yang Chen, Andrew E Santosa, Ang Ming Yi, Abhishek
Sharma, Asankhaya Sharma, and David Lo. A machine
learning approach for vulnerability curation. In Proceed-
ings of the 17th International Conference on Mining
Software Repositories, pages 32–42, 2020.

[25] Steven P Crain. Open source security assessment as a
class project. Journal of Computing Sciences in Col-
leges, 32(6):41–53, 2017.

[26] Beatriz Sainz de Abajo and Agustín Llamas Ballestero.
Overview of the most important open source software:
analysis of the benefits of openmrs, openemr, and vista.
In Telemedicine and e-health services, policies, and ap-
plications: Advancements and developments, pages 315–
346. IGI Global, 2012.

[27] Alexandre Decan, Tom Mens, and Eleni Constanti-
nou. On the impact of security vulnerabilities in the
npm package dependency network. In Proceedings of
the 15th International Conference on Mining Software
Repositories, pages 181–191, 2018.

[28] Alexandre Decan, Tom Mens, and Philippe Grosjean.
An empirical comparison of dependency network evolu-
tion in seven software packaging ecosystems. Empirical
Software Engineering, 24(1):381–416, 2019.

[29] Aurelien M. Delaitre, Bertrand C. Stivalet, Paul E.
Black, Vadim Okun, Terry S. Cohen, and Athos Ribeiro.
SATE V Report: Ten years of static analysis tool exposi-
tions. Technical report, National Institute of Standards
and Technology, 2018.

[30] Josh Fruhlinger. Equifax data breach faq: What
happened, who was affected, what was the impact?
https://www.csoonline.com/article/3444488/
equifax-data-breach-faq-what-happened-who-\
was-affected-what-was-the-impact.html, 2020.

[31] JI Hejderup. In dependencies we trust: How vulnerable
are dependencies in software modules? 2015.

14

https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/auditing-package-dependencies-for-\security-vulnerabilities
https://docs.npmjs.com/auditing-package-dependencies-for-\security-vulnerabilities
https://docs.npmjs.com/auditing-package-dependencies-for-\security-vulnerabilities
https://en.wikipedia.org/wiki/Common_Vulnerability_Scoring_System
https://en.wikipedia.org/wiki/Common_Vulnerability_Scoring_System
https://eclipse.github.io/steady/about/
https://eclipse.github.io/steady/about/
https://github.com/srcclr/efda
https://github.com/srcclr/efda
https://github.com/advisories
https://github.com/advisories
https://jeremylong.github.io/DependencyCheck/general/internals.html
https://jeremylong.github.io/DependencyCheck/general/internals.html
https://jeremylong.github.io/DependencyCheck/general/internals.html
https://cve.mitre.org/
modulecounts.com
https://nvd.nist.gov/vuln
https://nvd.nist.gov/vuln
https://www.npmjs.com/advisories
https://www.npmjs.com/advisories
http://guide.openmrs.org/en/
http://guide.openmrs.org/en/
https://wiki.openmrs.org/display/docs/OpenMRS+Reference+Application+Distribution
https://wiki.openmrs.org/display/docs/OpenMRS+Reference+Application+Distribution
https://wiki.openmrs.org/display/docs/OpenMRS+SDK
https://wiki.openmrs.org/display/docs/OpenMRS+SDK
https://snyk.io/product/open-source-security-management/
https://snyk.io/product/open-source-security-management/
https://snyk.io/vuln
https://ossindex.sonatype.org/
https://ossindex.sonatype.org/
https://github.com/SAP/project-kb
https://github.com/SAP/project-kb
https://blog.victi.ms/
https://blog.victi.ms/
https://github.com/apps/whitesource-bolt-for-github
https://github.com/apps/whitesource-bolt-for-github
https://www.whitesourcesoftware.com/vulnerability-database/
https://www.whitesourcesoftware.com/vulnerability-database/
https://0patch.com/files/SecurityPatchingIsHard_2017.pdf
https://0patch.com/files/SecurityPatchingIsHard_2017.pdf
https://0patch.com/files/SecurityPatchingIsHard_2017.pdf
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-\was-affected-what-was-the-impact.html
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-\was-affected-what-was-the-impact.html
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-\was-affected-what-was-the-impact.html

[32] Nasif Imtiaz, Brendan Murphy, and Laurie Williams.
How do developers act on static analysis alerts? an em-
pirical study of coverity usage. In 2019 IEEE 30th
International Symposium on Software Reliability Engi-
neering (ISSRE), pages 323–333. IEEE, 2019.

[33] Nasif Imtiaz, Akond Rahman, Effat Farhana, and Laurie
Williams. Challenges with responding to static analysis
tool alerts. In 2019 IEEE/ACM 16th International Con-
ference on Mining Software Repositories (MSR), pages
245–249. IEEE, 2019.

[34] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Di-
etmar Pfahl. Structure and evolution of package depen-
dency networks. In 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR),
pages 102–112. IEEE, 2017.

[35] Sean Kinzer. Using cpes for open-source
vulnerabilities? think again. https://www.
veracode.com/blog/managing-appsec/
using-cpes-open-source-vulnerabilities-think-again.

[36] Josephine Lamp, Carlos E Rubio-Medrano, Ziming
Zhao, and Gail-Joon Ahn. The danger of missing instruc-
tions: a systematic analysis of security requirements for
mcps. In 2018 IEEE/ACM International Conference
on Connected Health: Applications, Systems and En-
gineering Technologies (CHASE), pages 94–99. IEEE,
2018.

[37] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad,
William Robertson, Christo Wilson, and Engin Kirda.
Thou shalt not depend on me: Analysing the use of
outdated javascript libraries on the web. arXiv preprint
arXiv:1811.00918, 2018.

[38] National Institute of Standards and Technoloy (NIST).
Guide for conducting risk assessments, nist special
publication 800-30. https://csrc.nist.gov/
publications/detail/sp/800-30/rev-1/final,
September 2012. [Online; accessed 7-Oct-2020].

[39] Top OWASP. Top 10-2017 the ten most critical web
application security risks. OWASP_Top_10-2017_%
28en, 29, 2020.

[40] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, An-
tonino Sabetta, and Fabio Massacci. Vuln4real: A
methodology for counting actually vulnerable depen-
dencies. IEEE Transactions on Software Engineering,
2020.

[41] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. A
qualitative study of dependency management and its
security implications. Proc. of CCS, 20.

[42] Henrik Plate, Serena Elisa Ponta, and Antonino Sabetta.
Impact assessment for vulnerabilities in open-source
software libraries. In 2015 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME),
pages 411–420. IEEE, 2015.

[43] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta.
Beyond metadata: Code-centric and usage-based analy-
sis of known vulnerabilities in open-source software. In
2018 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 449–460. IEEE,
2018.

[44] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta.
Detection, assessment and mitigation of vulnerabilities
in open source dependencies. Empirical Software Engi-
neering, pages 1–41, 2020.

[45] Apache Maven Project. "introduction
to the dependency mechanism". http:
//maven.apache.org/guides/introduction/
introduction-to-dependency-mechanism.html.

[46] Teri Radichel. Why patching software is hard: Tech-
nical challenges. https://www.darkreading.
com/vulnerabilities-and-threats/
why-patching-software-is-hard-technical-\
challenges-/a/d-id/1330181.

[47] Syed Zain Rizvi, Philip WL Fong, Jason Crampton, and
James Sellwood. Relationship-based access control for
openmrs. arXiv preprint arXiv:1503.06154, 2015.

[48] Help Net Security. Surge in cyber at-
tacks targeting open source software projects.
https://www.helpnetsecurity.com/2020/08/
13/surge-in-cyber-attacks-targeting-open-\
source-software-projects/?utm_source=
feedburner&utm_medium=feed&\utm_campaign=
Feed%3A+HelpNetSecurity+%28Help+Net+
Security%29.

[49] Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtou-
nis. On the recall of static call graph construction in
practice. ICSE, 2020.

[50] Christopher Theisen, Nuthan Munaiah, Mahran Al-
Zyoud, Jeffrey C Carver, Andrew Meneely, and Laurie
Williams. Attack surface definitions: A systematic lit-
erature review. Information and Software Technology,
104:94–103, 2018.

[51] Inger Anne Tøndel, Martin Gilje Jaatun, Daniela Soares
Cruzes, and Laurie Williams. Collaborative security risk
estimation in agile software development. Information
& Computer Security, 2019.

15

https://www.veracode.com/blog/managing-appsec/using-cpes-open-source-vulnerabilities-think-again
https://www.veracode.com/blog/managing-appsec/using-cpes-open-source-vulnerabilities-think-again
https://www.veracode.com/blog/managing-appsec/using-cpes-open-source-vulnerabilities-think-again
https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://www.darkreading.com/vulnerabilities-and-threats/why-patching-software-is-hard-technical-\challenges-/a/d-id/1330181
https://www.darkreading.com/vulnerabilities-and-threats/why-patching-software-is-hard-technical-\challenges-/a/d-id/1330181
https://www.darkreading.com/vulnerabilities-and-threats/why-patching-software-is-hard-technical-\challenges-/a/d-id/1330181
https://www.darkreading.com/vulnerabilities-and-threats/why-patching-software-is-hard-technical-\challenges-/a/d-id/1330181
https://www.helpnetsecurity.com/2020/08/13/surge-in-cyber-attacks-targeting-open-\source-software-projects/?utm_source=feedburner&utm_medium=feed&\utm_campaign=Feed%3A+HelpNetSecurity+%28Help+Net+Security%29
https://www.helpnetsecurity.com/2020/08/13/surge-in-cyber-attacks-targeting-open-\source-software-projects/?utm_source=feedburner&utm_medium=feed&\utm_campaign=Feed%3A+HelpNetSecurity+%28Help+Net+Security%29
https://www.helpnetsecurity.com/2020/08/13/surge-in-cyber-attacks-targeting-open-\source-software-projects/?utm_source=feedburner&utm_medium=feed&\utm_campaign=Feed%3A+HelpNetSecurity+%28Help+Net+Security%29
https://www.helpnetsecurity.com/2020/08/13/surge-in-cyber-attacks-targeting-open-\source-software-projects/?utm_source=feedburner&utm_medium=feed&\utm_campaign=Feed%3A+HelpNetSecurity+%28Help+Net+Security%29
https://www.helpnetsecurity.com/2020/08/13/surge-in-cyber-attacks-targeting-open-\source-software-projects/?utm_source=feedburner&utm_medium=feed&\utm_campaign=Feed%3A+HelpNetSecurity+%28Help+Net+Security%29
https://www.helpnetsecurity.com/2020/08/13/surge-in-cyber-attacks-targeting-open-\source-software-projects/?utm_source=feedburner&utm_medium=feed&\utm_campaign=Feed%3A+HelpNetSecurity+%28Help+Net+Security%29

[52] Jeff Williams and Arshan Dabirsiaghi. The unfortunate
reality of insecure libraries. Asp. Secur. Inc, pages 1–26,
2012.

[53] Rodrigo Elizalde Zapata, Raula Gaikovina Kula, Bodin
Chinthanet, Takashi Ishio, Kenichi Matsumoto, and Aki-
nori Ihara. Towards smoother library migrations: A
look at vulnerable dependency migrations at function
level for npm javascript packages. In 2018 IEEE In-
ternational Conference on Software Maintenance and
Evolution (ICSME), pages 559–563. IEEE, 2018.

[54] Yaqin Zhou and Asankhaya Sharma. Automated iden-
tification of security issues from commit messages and
bug reports. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pages
914–919, 2017.

[55] Zeljka Zorz. The percentage of open source
code in proprietary apps is rising. https:
//www.helpnetsecurity.com/2018/05/22/
open-source-code-security-risk/.

16

https://www.helpnetsecurity.com/2018/05/22/open-source-code-security-risk/
https://www.helpnetsecurity.com/2018/05/22/open-source-code-security-risk/
https://www.helpnetsecurity.com/2018/05/22/open-source-code-security-risk/

	Introduction
	Key Concepts & Terminologies:
	Maven:
	Node Package Manager (npm):

	Evaluation subject software: OpenMRS
	Why OpenMRS?
	OpenMRS: Dependency Overview

	Vulnerable Dependency Detection Tools
	Tool Selection
	Running the Tools
	Analyzing Tool Results

	RQ1: How do the analysis results of existing vulnerable dependency detection tools differ in comparison to each other?
	What is the difference among tools' results regarding unique vulnerable dependencies (VDs)?
	What is the difference among tools' result regarding unique vulnerabilities?
	What fix actions are suggested by the tools for generated alerts?

	RQ2: What additional information is presented by the existing tools to aid in assessing the risk of vulnerability in dependencies?
	Code analysis based metrics
	Package Based metric:
	Dependency characteristics based metrics
	Vulnerability based metric:
	Confidence in alert validity:

	Discussion
	Threats to Validity
	Related Work
	Conclusion
	Acknowledgements

